3 HoloViews

## holoviews_backend=matplotlib
import holoviews as hv
renderer = hv.renderer('matplotlib')
curve = hv.Curve(([1, 2, 3], [5, 1, 3]))
png, info = renderer(curve, fmt='png')

from IPython.display import display_png
display_png(png, raw=True)

png

from pheasant.jupyter.display import display

display(curve)
'![png]()'

png

png

df = pd.DataFrame([[1 ,2]])
0 1
0 1 2
def func(x):
    return 5 * x